Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 151: 106355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176196

RESUMO

In recent years, electroactive nerve conduits made from a blend of P(VDF-TrFE) (poly (vinylidene fluoride-trifluoroethylene)) with other materials have shown significant progress. However, research combining P(VDF-TrFE) conduits with drug delivery systems remains sparse. In this study, we developed a novel gastrodin-loaded P(VDF-TrFE)-Eudragit L100-gold nanoparticles (Gas@PT-EL100-AuNPs) nanofiber membrane. Fabricated through electrospinning technique, this composite membrane aimed to investigate the impacts of gastrodin and AuNPs on its properties. Experimental results indicated that the incorporation of gold nanoparticles significantly reduced the fiber diameter of the membrane and enhanced the overall performance by improving hydrophilicity and piezoelectric properties. Specifically, the addition of AuNPs substantially enhanced the piezoelectric performance of the nanofiber membrane. Furthermore, the inclusion of gastrodin not only improved the membrane's hydrophilicity but also enabled effective release of the neuroprotective drug. These findings suggest that the Gas@PT-EL100-AuNPs nanofiber membrane is a novel biomaterial with potential applications in the repair and treatment of nerve injuries.


Assuntos
Álcoois Benzílicos , Polímeros de Fluorcarboneto , Glucosídeos , Nanopartículas Metálicas , Nanofibras , Ácidos Polimetacrílicos , Polivinil , Ouro
2.
Macromol Biosci ; 23(10): e2300078, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37235853

RESUMO

Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.


Assuntos
Traumatismos dos Nervos Periféricos , Procedimentos de Cirurgia Plástica , Humanos , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/fisiologia , Axônios , Próteses e Implantes , Regeneração Nervosa , Nervo Isquiático/lesões
3.
Colloids Surf B Biointerfaces ; 225: 113276, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989814

RESUMO

Achieving sustained and stable release of macromolecular antibacterial agents and unidirectional transport of liquids in targeted environment is still a challenge to be addressed in the management of wounds with large amounts of tissue exudates. In this work, a multilayer electrospun membrane (ethylcellulose-ethylcellulose/gelatin-quercetin/Eudragit L-100/polyethylene glycol, EC-EC/Gel-Q/EL/PEG) was designed with hydrophobic-hydrophilic gradients and drug sustained-release properties controlled by self-pumping effect and prepared using sequential electrospinning technology. The capillary force of different layers in the multilayer membrane could be controlled by precisely tuning the polymer concentrations of the inner and middle layers to extract water directly from hydrophobic inner ethylcellulose (EC) layer to hydrophilic middle ethylcellulose/gelatin (EC/Gel) layer. The droplets could not penetrate the hydrophobic side, but the drug molecules in the outer layer quercetin-loaded Eudragit L-100 (Q/EL/PEG) membrane moved after absorbing a large amount of water. The drug release behavior of multilayer wound dressing mainly followed the Korsmeyer-Peppas model. This multifunctional electrospun membrane could rapidly drive the biofluid outflow, effectively block the invasion of external contaminants and continuously release anti-inflammatory drugs, without any obvious cytotoxicity to mouse fibroblast cells. Hence, the above results indicate the excellent therapeutic potential of the proposed biomaterial as a wound dressing for diabetic patients.


Assuntos
Gelatina , Nanofibras , Camundongos , Animais , Gelatina/química , Quercetina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Água/química , Nanofibras/química
4.
Bioengineering (Basel) ; 9(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447690

RESUMO

In this work, gold nanoparticles (AuNPs) and curcumin drug were incorporated in polyvinylidene fluoride (PVDF) nanofibers by electrospinning as a novel tissue engineering scaffold in nerve regeneration. The influence of AuNPs on the morphology, crystallinity, and drug release behavior of nanofiber membranes was characterized. A successful composite nanofiber membrane sample was observed by scanning electron microscopy (SEM). The addition of AuNPs showed the improved as well as prolonged cumulative release of the drug. The results indicated that PVDF-AuNPs nanofiber membrane could potentially be applied for nerve regeneration.

5.
Int J Biol Macromol ; 204: 410-418, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35150779

RESUMO

Curcumin (Cur) exhibits low water solubility and insufficient dispersibility in food systems, and cannot exert its excellent antioxidant properties. In this work, Chitosan (CS) nanoparticles were prepared by ionic crosslinking method using chitosan as carrier and sodium tripolyphosphate (TPP) as crosslinking agent, then Cur was loaded to obtain curcumin nanoparticles (CNPs). CNPs presented a spherical morphology with average size of 278.9 nm. Compared with the solubility of native Cur (0.017 µg/mL) at 25 °C, the water solubility of CNPs increased to 35.92 µg/mL of more than 2100 times. In addition, the antioxidant capacity of Cur was also studied based on DPPH free radical scavenging, the results showed that with the increase of the concentration, the antioxidant capacity of CNPs was significantly increased (p < 0.05), which was higher than that of Cur at the same concentration. The edible coating was prepared by adding CNPs into sodium carboxymethyl cellulose (CMC) to study the effects of CMC-CNPs coatings in improving the quality and shelf life of fresh pork stored at 4 ± 1 °C for 15 days. The results showed that CMC-CNPs edible coating could significantly inhibit lipid oxidation of fresh pork (p < 0.05) and could be further applied in lipid rich food packaging.


Assuntos
Quitosana , Curcumina , Filmes Comestíveis , Nanopartículas , Carne de Porco , Carne Vermelha , Animais , Antioxidantes/farmacologia , Quitosana/química , Curcumina/química , Curcumina/farmacologia , Nanopartículas/química , Tamanho da Partícula , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...